Adversarial Structured Prediction for Multivariate Measures

نویسندگان

  • Hong Wang
  • Ashkan Rezaei
  • Brian D. Ziebart
چکیده

Many predicted structured objects (e.g., sequences, matchings, trees) are evaluated using the F-score, alignment error rate (AER), or other multivariate performance measures. Since inductively optimizing these measures using training data is typically computationally difficult, empirical risk minimization of surrogate losses is employed, using, e.g., the hinge loss for (structured) support vector machines. These approximations often introduce a mismatch between the learner’s objective and the desired application performance, leading to inconsistency. We take a different approach: adversarially approximate training data while optimizing the exact F-score or AER. Structured predictions under this formulation result from solving zerosum games between a predictor seeking the best performance and an adversary seeking the worst while required to (approximately) match certain structured properties of the training data. We explore this approach for word alignment (AER evaluation) and named entity recognition (F-score evaluation) with linear-chain constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adversarial Divergences are Good Task Losses for Generative Modeling

Generative modeling of high dimensional data like images is a notoriously difficult and ill-defined problem. In particular, how to evaluate a learned generative model is unclear. In this paper, we argue that adversarial learning, pioneered with generative adversarial networks (GANs), provides an interesting framework to implicitly define more meaningful task losses for unsupervised tasks, such ...

متن کامل

Good Task Losses for Generative Modeling

Generative modeling of high dimensional data like images is a notoriously difficult and ill-defined problem. In particular, how to evaluate a learned generative model is unclear. In this paper, we argue that adversarial learning, pioneered with generative adversarial networks (GANs), provides an interesting framework to implicitly define more meaningful task losses for unsupervised tasks, such ...

متن کامل

Houdini: Fooling Deep Structured Prediction Models

Generating adversarial examples is a critical step for evaluating and improving the robustness of learning machines. So far, most existing methods only work for classification and are not designed to alter the true performance measure of the problem at hand. We introduce a novel flexible approach named Houdini for generating adversarial examples specifically tailored for the final performance m...

متن کامل

Adversarial Sequence Tagging

Providing sequence tagging that minimize Hamming loss is a challenging, but important, task. Directly minimizing this loss over a training sample is generally an NP-hard problem. Instead, existing sequence tagging methods minimize a convex upper bound that upper bounds the Hamming loss. Unfortunately, this often either leads to inconsistent predictors (e.g., max-margin methods) or predictions t...

متن کامل

Bregman Divergence for Stochastic Variance Reduction: Saddle-Point and Adversarial Prediction

Adversarial machines, where a learner competes against an adversary, have regained much recent interest in machine learning. They are naturally in the form of saddle-point optimization, often with separable structure but sometimes also with unmanageably large dimension. In this work we show that adversarial prediction under multivariate losses can be solved much faster than they used to be. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.07374  شماره 

صفحات  -

تاریخ انتشار 2017